DOI: http://dx.doi.org/10.18782/2320-7051.2255

International Journal of Pure & Applied

Bioscience

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **4 (2):** 71-77 (2016)

Research Article

In-Silico Structural Modelling of Transaldolase from *Helicobacter pylori* (Strain G27) A Class I Transaldolase

Rabiu Salihu^{1,2}*, Ismail Haruna^{1,3}, Hassana Abubakar^{1,4}, Mohd Shahir Shamsir¹ and Sepideh Parvizpour¹

¹Faculty of Biosciences and Medical Engineering, University Technology Malaysia, 81310 Skudai, Johor, Malaysia
²Department of Biological Sciences, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
³Department of Microbiology, Bauchi State University Gadau, PMB 65 Gadau Bauchi State, Nigeria
⁴Department of Biochemistry, Ibrahim Badamasi Babangida University Lapai, PMB 11 Niger State, Nigeria
*Corresponding Author E-mail: salihu.r@fud.edu.ng

Received: 29.03.2016 | Revised: 10.04.2016 | Accepted: 12.04.2016

ABSTRACT

Numerous biotechnological applications of enzymes including rational drug design, turbidity reducing in the brewing industry and animal feeds digestibility enhancement have been recorded. An enzyme Transaldolase from Helicobacter pylori G27 (an important causative agent for gastric ulcers worldwide) plays an important role in NADPH synthesis regulation. However, an experimental structure of this enzyme is yet to be known. In this paper, we modelled an in-silico 3-Dimentional structure of a Transaldolase from H. pylori G27 using several Bioinformatics tools. Reliability and precision of the modelled structure were also evaluated. This work is anticipated to be found useful in reviewing structure/function relationship as well as rational drug design for the treatment of gastric ulcers.

Key words: In-silico, Transaldolase, Helicobacter pylori

INTRODUCTION

Helicobacter pylori, a gram-negative pathogen causing different gastric infirmities including gastritis, ulcers, and gastric carcinoma. It colonizes the stomachs of over half the world's population⁴. *H. pylori* has long been categorized as "Class I carcinogen" by the World Health Organisation (WHO) as prolong colonization by this organism can aggravate chronic gastritis leading to gastric atrophy, metaplasia, and dysplasia¹⁴. The organism is one of the most important causative agent for gastric cancer and

the second leading cause of cancer death worldwide 18 .

Transaldolase from *H. pylori*, Uniprot ID (B5Z9B4) is an enzyme belonging to the class I transaldolases (EC: 2.2.1.2) that plays an important role in non-oxidative pentose phosphate pathway (PPP) of central carbon metabolism by employing a Schiff-base mechanism for stabilization of the reaction intermediates¹⁶. Pentose phosphate pathway for glucose-6-phosphate metabolism was described to contain three distinct enzyme systems.

Cite this article: Salihu, R., Haruna, I., Abubakar, H., Shamsir, M.S. and Parvizpour, S., In-Silico Structural Modelling of Transaldolase from *Helicobacter pylori* (Strain G27) A Class I Transaldolase, *Int. J. Pure App. Biosci.* **4(2)**: 71-77 (2016). doi: http://dx.doi.org/10.18782/2320-7051.2255

Salihu *et al*

activity³.

Members of the class I aldolases are the

ubiquitous transaldolases, which catalyze the

reversible transfer of a dihydroxyacetone

moiety, derived from fructose-6-phosphate to

erythrose-4-phosphate yielding sedoheptulose-7phosphate and glyceraldehyde-3-phosphate. The

enzyme is found in the non-oxidative branch of

the pentose phosphate pathway, which is

important for generation of NADPH, the

reducing power in the cell²⁴. As other class I

aldolases, transaldolases fold into a β_8 barrel

structure. A shared feature in these aldolases is a charged aliphatic amino acid residue (Lysine)

located on strand β_6 of the barrel, forming a

Schiff base reaction with substrate in the active

site²³. In transaldolases however, this lysine

residue is positioned on strand β_4 of the α/β

barrel and transaldolases appear to be related to the other class I aldolases by a circular

permutation. Replacement of this lysine residue

by site-directed mutagenesis in yeast and human

transaldolase resulted in loss of catalytic

transaldolases from different organisms were

said to be available as reported by Soderberg and

Alver²¹. However, to our knowledge no 3-

Dimentional structure is available for this

enzyme from *Helicobacter pylori*. In this paper therefore, we present an in-silico 3D structure of

a transaldolase from H. pylori strain G27 as well

as validatory results from different servers.

structures

of

3-Dimentional

Int. J. Pure App. Biosci. 4 (2): 71-77 (2016)

Sequence retrieval and Analysis

The amino acid sequence (316 residues) of transaldolase from *Helicobacter pylori* strain G27 with accession number: B5Z9B4 was retrieved from UniProtKB⁴ in a FASTA format. Running a BLASTp using NCBI¹ shows a very low identity of (<40%) with many other entries in the PDB.

Homology modeling

The amino acid sequence was submitted to I-TASSER²⁵, Swiss model², Phyre2¹¹ and RaptorX¹⁰ servers for prediction of a 3D model. PDB output file of all the predicted models from the above servers were generated together with some potential templates. Structural alignment and superimposition for templates and the predicted models was performed using Pymol⁶.

RESULTS

Sequence analysis

To analyze the *H. pylori* (G27) sequence obtained from the Uniprot database, NCBI Blastp was used to run a similarity search which shows a similarity of (<97%) and low identity of (<40%) with Transaldolase from *Neiserria gonorrhoeae* (3CLM) in PDB database¹³. Blastp also shows the specific hits, super family hits as well as the putative conserved domains¹⁵. Running a multiple sequence alignment between the query, 3CLM, 3R5E, 3HJZ and 1WXO sequences using Clustal Omega²⁰ confirms the putative conserved residues as well as the active site residues (Figure 1).

 ANZZA I FOBETO I CHAIN I SEQUENCE QUEZZARI DESCRIPTIONI DESCRIPTIONI QUEZZARI DESCRIPTIONI QUEZ

Fig. 1: Multiple sequence alignment between the query, 3CLM, 3R5E, 3HJZ and 1WXO sequences showing the conserved residues including active site (Red) and phosphate binding site (Blue).

Copyright © April, 2016; IJPAB

MATERIALS AND METHODS

Int. J. Pure App. Biosci. 4 (2): 71-77 (2016)

ISSN: 2320 - 7051

Salihu *et al* Template selection

3CLM appeared to be the suitable template from the NCBI result with ~97% similarity. To further validate the template selection, the sequence was submitted to I-TASSER²⁵, HHpred²², Phyre2¹¹, mGenthreader⁹ and PSI-Blast¹ tools and different closest templates were obtained, among which the suitable (3CLM) was selected based on similarity and e-value as well as its commonest appearance in all the 5 folding libraries as in (Table 1).

Table 1 Showing templates from different threading tools among which 3CLM was selected based on its lo)W
identity and e-value as well as commonest appearance in all the threading tools	

Server name	Template	Protein name	Organism	Identity	e-value
	PDB ID				
Phyre2	3R5E	Transaldolase	C. glutamicum	31%	NA
	3CLM			32%	NA
	3HJZ			20%	NA
mGenthreader	3CLM	Transaldolase	N. gonorrhoeae	NA	
	3R5E			NA	
	3CWN			NA	
I-TASSER	3CLM			NA	NA
	3R5E	Transaldolase B	E. coli	NA	NA
	3HJZ			NA	NA
HHpred	3CLM			32%	1.8e-85
	3R5E			32%	1.3e-84
	3HJZ	Transaldolase B	P. marinus	21%	1e-69
PSI-Blast	3CLM			31%	3e-45
	3R5E			31%	2e-39
	1WXO	Transaldolase	T. thermophiles	28%	4e-05

Homology modelling

To build a 3D model for the query sequence, the sequence was submitted to I-TASSER, RaptorX, Swiss-model and Phyre2. The predicted models were also submitted to RAMPAGE for Ramachandran plot (Table 2). The 3D model with highest Ramachandran plot score (RaptorX) was selected among the three (Figure 2). Multiple sequence alignment was performed using Clustal Omega²⁰ to further ratify conserved regions (active site and phosphate binding site residues). Secondary structure alignment was also done using Phyre2 to compare the structural motifs¹¹.

Server name	No. of residues in	No. of residues in allowed	No. of residues in outlier
	favored region (%)	region (%)	region (%)
RAPTORX	298 (94.9%)	10 (3.2%)	6 (1.9%)
SWISS - MODEL	287 (92.9%)	14 (4.5%)	8 (2.6%)
PHYRE2	292 (94.8%)	11 (3.6%)	5 (1.6%)
YASARA	305 (97.1%)	8 (2.5%)	1 (0.3%)

Fig. 2: 3D surface structure of Transaldolase showing (a) the active site pocket (Cyan color), (b) the phosphate biding site (Blue color)

Model validation

RaptorX predicted model with highest Ramachandran score (number of residues in allowed region) was selected. To further refine its quality the selected model was subjected to YASARA energy minimization server. The final model from YASARA was resubmitted to RAMPAGE for Ramachandran¹² analysis to check the model quality improvement when the energy has been reduced. VERIFY3D⁷ and ERRAT⁵ servers were used to further validate the predicted model (Figure 3).

Fig. 3: ERRAT result showing the overall quality factor of the model

Fig. 4: (a) Ramachandran plot showing the number of residues in favoured, allowed and outlier regions (97.1%, 2.5% and 0.3%) respectively and (b) A predicted 3D structure of a Transaldolase from *H. pylori* strain (GH27)

Salihu *et al*

Int. J. Pure App. Biosci. 4 (2): 71-77 (2016)

ISSN: 2320 - 7051

DISCUSSION

From the results presented above, the similarity search using NCBI shows that the query sequence belongs to the family of Transaldolase I. Members of the family plays a role in central carbon metabolism specifically the nonoxidative pentose phosphate pathway. Although there were paucity of literature on the template transaldolase from Neiseria gonnrrhoeae (3CLM) about the active site residues, transaldolase from E. coli and Corynebacterium glutamicum were used to identify the conserved residues since members of this family have well conserved sequences. But when superimposition of the model and template (3CLM) was made using Pymol, all the conserved residues were

found to be well aligned. Lysine acting as nucleophillic residue to attack the carbonyl group of the fructose-6-phosphate is highly conserved in this family²³ and Miosga, et al.,¹⁷. The active site residues for the transaldolase from H. pylori, and (Neisseria gonorrhoeae) in bracket were Asp9 (Asp17), Thr33 (Thr41), Asn35 (Asn43), Glu96 (Glu107), Lys127 (Lys138), Asn149 (Asn160), Thr151, (Thr162), Ser177 (Ser199) and Phe179 (Phe201). The phosphate binding site residues were also Arg182 (Arg204), Ser225 (Ser259). but Argenine and Lysine found in E. coli and C. glutamicum respectively were absent in both our model and the template.

Fig. 5: Showing the active site residues (Asp9, Thr33, Asn35, Glu96, Lys127, Asn149, Thr151, Ser177 and Phe179)

Fig. 6: (a) superimposition of catalytic residues for model (green) and template (orange) (b) 3D structure of superimposed model (red) and template (green)

Salihu <i>et al</i>	Int. J. Pure App. Biosci. 4 (2): 71-77 (2016)	ISSN: 2320 – 7051
Predicted Secondary structure Query Sequence Template Sequence Template Nover Secondary structure Template Predicted Secondary structure	STAT WE BALL PLUS BELAND LAND AND AND AND AND AND AND AND AND AND	90
Predicted Secondary structure Comp Secondary Template Provide Secondary structure Template Predicted Secondary structure		100 I KS I D EAK RI F K T L Q G T V E E A R RI H A A I 100 100
Predicted Secondary Identities Quary Sequence Template Sequence Template Predicted Secondary structure Template Predicted Secondary structure	10 TO	LA KEVQKR YARGIAKRLAAGQS TT
Predicted Stecondiny data time Query Sequence Template Sequence Template Room Secondary structure Template Predicted Secondary structure	TT	CHAN CHAN CHAN CHAN CHAN CHAN CHAN CHAN
Predicted Secondary structure Quary Sequence Template Sequence Template Predicted Secondary structure Template Predicted Secondary structure	THE TRANSPORT OF TRANSPORT OF TRANSPORT OF TRANSPORT OF TRANSPORT	200 PNTEYQTPLKIAEI GTAKATLTESADEA TTTTADEA 300. 300
Predicted Secondary structure (Dev) Courts Courts Template Sequence Template Predicted Secondary structure Template Predicted Secondary structure	277 200 201 201 201 277 200 201 201 201 270 201 201 201 201 271 201 201 201 201 271 201 201 201 201 271 201 201 201 201 270 201 201 201 201	
α-helix T - Turn β-strand S - Bend Coil G - 3m helix	7	

Fig. 7: Secondary structure alignment between the model and template (3CLM) predicted by Phyre2

The structural motif of this protein was found to be in consistent with $(\beta/\alpha)_8$ -barrel fold, as it is well conserved between the different subfamilies though different degrees of oligomerization. The active site conservation, the phosphate binding site as well as the position of an important catalytic residue i.e. Lysine that was positioned

Coil

on strand β_4 of the α/β barrel were also in members¹⁹. with the family consistent Pylogenetic analysis of the sequence shows the closeness of TalHp with the template (3CLM) in evolutionary relationship (Figure 8) though there is a slight divergence in the tree, but they all belongs to class I transaldolase family²³.

Fig. 8: Pylogenetic tree showing the closest family members

Assessment of quality profiles of a good including geometry of the backbone conformation, energy profiles and correctness of residues interactions done was using Ramachandran plot, YASARA, ERRAT and VERIFY3D. Ramachandran plot analysis done to assess the stereochemical properties of the predicted model was very interesting with almost all the residues falling in favoured and allowed region (97.1% and 2.5%) respectively. This in essence shows a very good arrangement. Copyright © April, 2016; IJPAB

As most of proteins in nature are known to have lower energy profile for flexibility and function⁸, the predicted model was also submitted to YASARA for energy minimization to simulate the natural conformation. The end model from YASARA was found to have less energy than the start model i.e. energy reduces drastically (-25232.4 to -171784.1 kJ/mol). ERRAT analysis for the backbone conformation of the model was extreemly high. The accepted score range is >50% and the higher the score the higher the

Salihu *et al*

quality of a modelled structure⁵. The predicted model has a score of 99.675% which shows that the structural conformation is very efficient.

To further check the efficiency of the model, it was subjected to VERIFY3D server. The result shows that 95.89% of the residues have an average score of 3D/1D>=0.2. Since atleast 85% of the residues in the structure must have a score of $\geq=0.2^7$, our result indicates very high score and this implies the structural accuracy of the predicted model.

CONCLUSION

In-silico prediction of three-dimensional structure (3D) structure of a class I transaldolase using different bioinformatics approachs will in future provide to proteomics community a useful information that can serve as tool for rational designing of proteins from the same or different family sharing the same structural motifs. Interestingly, the predicted structure validation using some validation servers also yields a very encouraging results signifying the closeness of the predicted structure to the crystallogarphic type.

REFERENCES

- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. *Nucleic acids research.*, 25: 3389-3402 (1997).
- Arnold, K., Bordoli, L., Kopp, J. and Schwede, T., *Bioinformatics.*, 22: 195-201 (2006).
- Banki, K. and Perl, A., *FEBS letters.*, 378: 161-165 (1996).
- Baltrus, D. A., Amieva, M. R., Covacci, A., Lowe, T. M., Merrell, D. S., Ottemann, K. M., Stein, M., Salama, N. R. and Guillemin, K., *Journal of bacteriology.*, **191:** 447-448 (2009).
- 5. Colovos, C. and Yeates, T. O., *Protein science.*, **2:** 1511 (1993).
- 6. DeLano, W. L., The PyMOL molecular graphics system (2002).
- Eisenberg, D., Lüthy, R. and Bowie, J. U., *Methods in enzymology.*,277: 396-404 (1997).
- Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G. and Sippl, M. J., *Journal of molecular biology.*,216: 167-180 (1990).

- Jones, D. T., *Journal of molecular biology.*, 287: 797-815 (1999).
- Källberg, M., Margaryan, G., Wang, S., Ma, J. and Xu, J., *Protein Structure Prediction.*, 17-27 (2014).
- Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. and Sternberg, M. J., *Nature protocols.*, **10**: 845-858 (2015).
- 12. Kleywegt, G. J. and Jones, T. A., *Structure.*, 4: 1395-1400 (1996).
- Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E. and Berman, H. M., *Nucleic acids research.*, 34: 302-305 (2006).
- Lee, Y.-C., Chen, T. H.-H., Chiu, H.-M., Shun, C.-T., Chiang, H., Liu, T.-Y., Wu, M.-S. and Lin, J.-T., *Gut.*, 62: 67-682 (2013).
- Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D. and Ke, Z., *Nucleic acids research.*, 33: 192-196 (2005).
- Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C. and Gonzales, N. R., *Nucleic acids research.*, **39**: 225-229 (2011).
- Miosga, T., Schaaff-Gerstenschläger, I., Franken, E. and Zimmermann, F. K., *Yeast.*, 9: 1241-1249 (1993).
- 18. Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P., *CA.*, **55**: 74-108 (2005).
- Samland, A. K., Baier, S., Schürmann, M., Inoue, T., Huf, S., Schneider, G., Sprenger, G. A. and Sandalova, T., *FEBS Journal.*, 279: 766-778 (2012).
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M. and Söding, J., *Molecular systems biology.*, 7: 539 (2011).
- 21. Soderberg, T. and Alver, R. C., *Archaea.*, **1**: 255-262 (2004).
- 22. Söding, J., Biegert, A. and Lupas, A. N., *Nucleic acids research.*, **33:** 244-248 (2005).
- 23. Thorell, S., Schürmann, M., Sprenger, G. A. and Schneider, G., *Journal of molecular biology.*, **319:** 161-171 (2002).
- 24. Wamelink, M., Struys, E. and Jakobs, C., Journal of inherited metabolic disease., **31**: 703-717 (2008).
- 25. Zhang, Y., *BMC bioinformatics.*,**9:** 40 (2008).